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Summary

The recurrence-risk ratio of disease in siblings, lS, is a
standard parameter used in genetic analysis to estimate
the statistical power for detection of a disease locus.
However, the relationship between the underlying risk
conferred by a disease-susceptibility allele and lS has not
been well described. The former is generally quantified
as a genotype relative risk, g, and measures the ratio of
disease risks between those with and those without the
susceptibility genotype(s). We demonstrate that lS varies
significantly more with respect to g and the disease-allele
frequency for two-locus multiplicative models than for
other two-locus and for single-locus models. For the sin-
gle- and two-locus dominant-inheritance models that we
studied, when a disease-susceptibility allele had a fre-
quency �.2, lS had an upper limit of !10. In general,
lS values 110 are possible only under recessive inheri-
tance, dominant inheritance with relatively rare (!5%)
disease-susceptibility alleles, or when two or more dis-
ease loci have alleles acting either epistatically or mul-
tiplicatively. We introduce the idea of a restricted sib
recurrence-risk ratio (l*

S) estimated by restriction of
sibships to those ascertained through a proband who
already has a putative high-risk allele. A l*

S larger than
the lS value estimated from randomly selected probands
can serve as an indirect way of testing whether the pos-
ited susceptibility allele increases disease risk. Our results
demonstrate that a lS of 2–3 may portend successful
mapping for a variety of genetic models but that, for
some two-locus models, a lS as high as 10 does not
guarantee underlying genes easily mapped by linkage.
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Introduction

The aggregation of a disease or physiologic trait in fam-
ilies is the first observable clue for an underlying genetic
susceptibility. A standard measure of familial aggrega-
tion is the recurrence-risk ratio of disease in relatives of
an index case, defined as the risk of disease in relatives
of a random individual with disease, divided by the pop-
ulation prevalence of the disease. While the relative re-
currence-risk ratio has long been used as a measure of
familial aggregation, it has become a linchpin for genetic
linkage studies since the three seminal papers by Risch
in 1990 (Risch 1990a, 1990b, 1990c). Risch outlined
how the relative recurrence-risk ratio, which he denoted
as “l,” could be used to infer a genetic model of in-
heritance (Risch 1990a). He also showed that under a
multilocus multiplicative model, the total l can be fac-
tored into locus-specific risk ratios (i.e., l = l1 l2)li),
where i = the number of disease loci, so that, under
certain assumptions, l can be used as a parameter to
estimate the power of an affected-relative-pair genetic
linkage analysis (Risch 1990a; Risch 1990b).

More recently, Risch and Merikangas (1996) extended
this paradigm by showing the genotypic relative risks
(defined as the risk to the heterozygote relative to that
for a person with no susceptibility alleles) and disease-
susceptibility-allele frequencies necessary to conduct an-
ticipated-association studies of the whole genome. The
premise behind this work was that linkage analysis will
likely be unable to locate many of the remaining genes
with modest effects on risk for complex diseases. Others
have refuted this idea (Scott et al. 1997), and, at present,
linkage analysis remains the standard method for lo-
calization of disease genes. Since many researchers use
lS, the sib recurrence-risk ratio, to estimate the power
of a planned linkage study, we investigate here the re-
lationship between the directly estimable lS and the fre-
quency and relative risk of the underlying susceptibility
genotype(s).

We demonstrate that, in general, the overall lS esti-
mated from disease-prevalence data does not by itself
provide a reliable parameter for estimating the statistical
power of a proposed linkage study. An elevated lS can
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be the result of one or more susceptibility genotypes
inherited in a variety of ways. For instance, when more
than one locus is involved, a large lS can be the result
of genotype-specific effects that are likely undetectable
by conventional linkage-analysis methods. On the other
hand, we show that, by careful choice of the sample,
mapping of disease-susceptibility loci by use of affected-
sib-pair (ASP) methods may be possible, even when very
modest levels of lS are observed.

Relationship between l and Genotype Relative Risk

As a measure of genetic risk, the limitations of l are
well known: both shared genes and shared environment
likely contribute to familial aggregation of a complex
disease. More generally, we can say that l is subject to
exposure misclassification, since the “exposure” effect
that l is supposed to measure is the risk conferred by
susceptibility gene(s) shared with the proband. To better
illustrate the relationship between l and the underlying
genotype relative risk, g, consider each parameter sep-
arately. We can define g in epidemiological terms as the
risk of disease for individuals with a given susceptibility
genotype, divided by the risk of disease for those without
the susceptibility genotype (i.e.—with the terminology
appropriate for an environmental factor—the risk in the
exposed, divided by the risk in the unexposed). If g�
symbolizes those with the susceptibility genotype (or,
more generally, the set of such genotypes), g� symbolizes
those without the susceptibility genotype (or the set of
such genotypes), and D represents disease, then, ex-
pressed in terms of probability,

( )Pr D d g �
g = . (1)

( )Pr D d g �

On the other hand, l is the risk of disease in the relatives
of an individual with disease, divided by the population
prevalence of disease; that is,

( )Pr D d AR
l = , (2)

( )Pr D

where “AR” denotes “affected relative,” and the de-
nominator of l, Pr(D), is the population prevalence of
disease. If a disease is determined solely by genetic fac-
tors, disease prevalence can be simply expressed in terms
of genotypic frequencies and conditional probabilities;
that is, , where pGPr (D) = p Pr (DFg�) � p Pr (DFg�)G 0

and p0 represent, respectively, the frequencies of those
with and without the susceptibility genotype(s) and sum
to 1. Substituting this value for Pr(D) into the expression
for l, equation (2), and solving for the conditional prob-
ability of disease if one has the susceptibility genotype,
Pr(DFg�), we find that the result is

( ) ( ){[Pr D d AR ]/l} � p Pr D d g �0

( )Pr D d g � = .
pG

This value for Pr(DFg�) can be substituted into the ex-
pression for g, equation (1), so that g can be expressed
in terms of l, genotypic frequencies, and disease con-
ditional probabilities; that is,

( ) ( ){[Pr D d AR ]/l} � p Pr D d g �0

g = . (3)
( )p D d g �G

To give an example of the possible large differences in
magnitude between l and g, consider a disease for which

and the disease prevalence is 1/1,000. If the riskl = 5S

of disease in those without the susceptibility genotype
is 1/10,000 and 90% of the population does not have
the susceptibility genotype, then g, according to the ex-
pression (3) above, would be 91, a value almost 20 times
larger than lS.

Single-Locus Model

To further explore the relationship between l and g

with regard to a purely genetic model, consider first the
simplest case of a dominant allele that increases risk of
disease. If we assume that all other alleles at the locus
in question make an equally lower contribution to dis-
ease risk, then the population prevalence of the disease
can be expressed in terms of genotypic frequencies and
baseline disease risk. If K0 is the prevalence of disease
for those without the susceptibility allele, and KG is the
prevalence of disease for those with the susceptibility
allele—that is, —then, under Hardy-WeinbergK = K gG 0

equilibrium, the population prevalence of disease for a
dominantly inherited allele is ,2 2K (p � 2pq) � K qG 0

where p is the frequency of the disease allele and q =
. This term is the denominator of l. If we consider1 � p

the specific case of sibs, then the numerator of lS can
be expressed as three separate probabilities (correspond-
ing to the proband having two, one, or no disease al-
leles), which sum to the total expected prevalence of
disease in sibs of affected patients (for a detailed expla-
nation of how the numerator for lS is derived, see the
Appendix).

Figure 1A and B shows the values of lS for a single-
locus model, over a range of g values and allele fre-
quencies, for dominant and recessive models. For a dom-
inantly inherited susceptibility allele (fig. 1A), lS values
15 are not possible for g values !100 unless the disease-
allele frequency is !5%. For a disease allele with a fre-
quency of 1%, the increase in lS is approximately linear
for g values of 10–50. Overall, the relationship between
lS and g is sigmoidal, with lS approaching an upper
limit as g increases, that is inversely related to the dis-
ease-allele frequency. At the higher disease-susceptibility-
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Figure 1 A, Relationship between lS and g for disease-suscep-
tibility allele frequencies of .01–.5 under a single-locus dominant-in-
heritance model. B, Relationship between lS and g for disease-sus-
ceptibility-allele frequencies of .01–.5 under a single-locus recessive-
inheritance model.

allele frequencies ( ), lS rises rapidly with respectp � .05
to g and then quickly levels off at modest levels of lS.

For a single recessive disease allele (fig. 1B), the ex-
pected values of lS at disease-allele frequencies �.1 are
generally higher than those in the dominant case at cor-
responding values of g, but overall the same type of
relationship holds; that is, for large values of g, the high-
est values of lS are at the lowest allele frequencies (data
not shown). For instance, for g values !50, the lS values
for a disease allele at frequency are greater thanp = .2
at , but for g values 150 the reverse is true. Ap = .1
similar cross in curves would be observed between p =

and each of the other four curves if the X-axis of.01
figure 1B were extended to higher values of g. In general,
under single-locus inheritance, any given value of lS can
result from more than one inheritance pattern. For ex-
ample, a lS value of 5 is possible for either a dominant
allele with a g value of ∼30 and frequency .01 or a
recessive allele with a g value of ∼60 and frequency
.1–.2.

Two-Locus Model

For most complex diseases, it is likely that more than
one disease locus exists. In a two-locus model, apart
from having to account for more susceptibility geno-
types, one must also consider the type of joint action
between loci (for the derivation of lS for the two-locus
model, see the Appendix). Consider first the situation in
which two unlinked loci act epistatically. Figure 2 shows
the expected values of lS under three different models
of epistasis. In model 1, both dominant alleles, A and
B, must be present for disease risk to be increased. There-
fore, of the nine possible genotypes, four have an in-
creased risk of disease. In model 2, A and B act in a
recessive manner, and both must be present in the ho-
mozygous state for disease risk to be increased. Under
this model, only one of the nine possible genotypes in-
creases disease risk. In model 3, three or more of the
disease alleles must be present for disease risk to be in-
creased (i.e., three of the nine possible genotypes increase
disease risk). This model is similar to a simple additive
polygenic threshold model. Models 2 and 3 are com-
parable on the basis of expected values of lS. This is not
surprising, because model 2 is also similar to an additive
polygenic threshold model, requiring at least four disease
alleles to be present for disease risk to be increased.
Model 1 differs from models 2 and 3 in that, for a greater
range of allele frequencies (.05–.2), higher values of lS

are expected over this range of g values. Epistatic models
1–3 have lS values of magnitude similar to those of the
single-locus models depicted in figure 1A and B for g

values � 100. The difference between the two lies in the
upper limits of lS that are higher for the two-locus ep-
istatic models than for the single-locus models as gr�.

Figures 3 and 4 examine two different two locus mod-
els, dominant-dominant and recessive-recessive, with ad-
ditive (fig. 3A and B) and multiplicative (fig. 4A and B)
interlocus action on g. As with the single-locus models,
five different susceptibility-allele frequencies were ex-
amined, in which each locus has one susceptibility allele
and both are at the same frequency in the population.
For additive action, the overall genotype-specific relative
risk of two loci, A and B, equals the sum of the two
separate genotype relative risks minus 1: g = g �AB A

. For multiplicative action, the overall genotype-g � 1B

specific relative risk equals the product of the two sep-
arate genotype relative risks: . In these two-g = g # gAB A B

locus additive or multiplicative models, the relationship
between lS and g is similar to that of the single-locus
models. In the case of dominant inheritance at two dis-
ease loci with additive action between loci (fig. 3A), the
values of lS for g values of 1–100 have a pattern similar
to that of the single-locus dominant model (fig. 1A), but
the single-locus model has slightly higher values of lS at
g values !100. The same general relationship between
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Figure 2 A, Relationship between lS and g, for disease-suscep-
tibility-allele frequencies of .01–.5, under a two-locus epistatic-inher-
itance model (epistatic model 1), in which at least one disease-suscep-
tibility allele from each locus must be present for increased disease
risk. B, Relationship between lS and g, for disease-susceptibility-allele
frequencies of .01–.5, under a two-locus epistatic-inheritance model
(epistatic model 2), in which two copies of a disease-susceptibility allele
from each locus must be present for increased disease risk. C, Rela-
tionship between lS and g, for disease-susceptibility allele frequencies
of .01–.5, under a two-locus epistatic-inheritance model (epistatic
model 3), in which a total of three or more copies of a disease-sus-
ceptibility allele from both loci must be present for increased disease
risk.

the single-locus and two-locus additive models holds
true for recessive inheritance (fig. 1B vs. fig. 3B), in
which comparable lS values are slightly higher or lower
for the two-locus model, depending on the allele
frequency.

The main difference in the relationship between lS and
g for the two-locus compared with the single-locus mod-
els is quantitative rather than qualitative, as illustrated
by the two multiplicative-action models investigated (fig.
4A and B), in which, for corresponding values of g, the
resulting lS values are much higher than those in the
single-locus model. The two multiplicative two-locus
models result in lS values that are significantly different
quantitatively from those of the additive two-locus mod-
els. The lS values for the recessive-recessive model are
more variable with disease-allele frequency than the lS

values for the dominant-dominant model but are at com-
parable levels for g values of ∼100.

Generalized Expression for lS

Table 1 shows the absolute values for the limit of lS

(for derivation, see the Appendix) for the different ge-
netic models investigated in figures 1–4. In general, the
limit of lS as increases with decreasing suscepti-g r �
bility-allele frequency, recessive inheritance, and the
number of susceptibility loci. However, when two loci
have additive effects on disease risk, the limit of lS is
actually lower than that in the single-locus case. The lS

limits shown in this table vary greatly, depending on the
underlying genetic model and susceptibility-allele fre-
quency. For instance, the lS limit for a dominant two-
locus additive model with each susceptibility allele at a
50% frequency is 1.07, whereas the lS limit for both
the two-locus recessive epistatic model (model 2) and
the multiplicative model, with susceptibility alleles at
1%, is 6,503,755. In fact, the latter two models have
the same lS limits at all susceptibility-allele frequencies.
The only difference between the two is that the multi-
plicative model reaches its lS limit sooner than does the
epistatic model (compare figs. 2B and 4B). Likewise, the
two-locus epistatic model (model 1) and the multipli-
cative dominant models have virtually the same lS limits,
with the multiplicative model again reaching its lS limit
sooner than does the epistatic model.

lS Conditional on an Observed Susceptibility
Genotype

On the basis of the models thus far investigated for a
complex disease with one or two susceptibility loci, the
estimated value of lS has only an indirect correlation
with the underlying g. In situations in which a putative
susceptibility locus exists, it may be possible to test
whether an elevated lS can be explained by an allele at
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Figure 3 A, Relationship between lS and g, for disease-suscep-
tibility-allele frequencies of .01–.5, under a two-locus dominant-ad-
ditive-inheritance model. B, Relationship between lS and g, for disease-
susceptibility-allele frequencies of .01–.5, under a two-locus
recessive-additive-inheritance model.

Figure 4 A, Relationship between lS and g, for disease-suscep-
tibility-allele frequencies of .01–.5, under a two-locus dominant-mul-
tiplicative -inheritance model. B, Relationship between lS and g, for
disease-susceptibility-allele frequencies of .01–.5, under a two-locus
recessive-multiplicative-inheritance model.

this locus. This can be done by restriction of the sibships
to those in which the proband has the genotype with
suspected increased risk. If the genotype contributes to
an increased lS, then, when families in which the sus-
ceptibility allele likely is not acting on disease risk (i.e.,
families in which the proband does not have the “at
risk” genotype) are eliminated, the overall value in the
numerator of lS should increase. We denote the sib re-
currence-risk ratio for probands having a selected ge-
notype as “l*

S.” If a putative disease-susceptibility al-
leles exists, estimates of l*

S can serve as a preliminary
test of linkage.

Table 2 shows the values of lS and l*
S for selected

inheritance models, for four different combinations of g

and allele frequency. For both single-locus models con-
sidered, restricting the probands to those with one or
more susceptibility alleles increases the sib recurrence-
risk ratio from 10% to 1100%. l*

S continues to increase
when families are restricted to those ascertained through

probands with both susceptibility alleles. However, for
susceptibility alleles with low (�10%) frequencies, this
would likely require a prohibitively large sample.

The increase of l*
S over lS when families are restricted

to those ascertained through probands with one or more
susceptibility alleles, under a two-locus model, depends
on the mode of inheritance and type of joint action be-
tween the loci. In general, for all three epistatic models,
the increase in l*

S over lS is greater than that for the
two single-locus models considered. In some instances,
if l*

S were not estimated, the evidence for a genetic effect
likely would not be detectable. For example, in epistatic
model 2, at the allele frequency and g values shown in
table 2, lS values are barely 11, but l*

S values are gen-
erally �2.

In the two-locus models, the increase in l*
S over lS is

greater in the multiplicative models than in the corre-
sponding additive models. With regard to mode of in-
heritance, the increase in l*

S over lS is generally greater
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Table 1

Limit of lS as , at Different Disease-Susceptibility-Allele Frequenciesg r �

GENETIC MODEL

LIMIT FOR DISEASE-SUSCEPTIBILITY-ALLELE FREQUENCY OF

.01 .05 .1 .2 .5

Single-locus models:
Dominant 25.56 5.57 3.08 1.84 1.14
Recessive 2,550.00 110.25 30.25 9.00 2.25

Two-locus models:
Epistatic model 1a 621.76 30.95 9.45 3.38 1.30
Epistatic model 2b 6,503,755.00 12,155.00 915.06 81.00 5.06
Epistatic model 3c 33,037.00 326.38 51.98 10.00 1.82
Additive dominant 13.28 3.28 2.04 1.42 1.07
Multiplicative dominant 653.51 31.01 9.46 3.38 1.30
Additive recessive 1,275.00 55.62 15.62 5.00 1.63
Multiplicative recessive 6,503,775.00 12,155.00 915.06 81.00 5.06

a Disease risk increases only when at least one susceptibility allele is present at each locus.
b Disease risk increases only when both susceptibility alleles are present at each locus.
c Disease risk increases when three or more susceptibility alleles are present at both loci.

in recessive models than in dominant models. In these
two-locus models, the increase in l*

S over lS can be
striking or modest, depending on the model and under-
lying genotype effect on disease risk. For example, the
l*

S for the two-locus dominant additive model in which
the proband must have both putative disease-suscepti-
bility alleles is only 26% greater than the standard lS

when the high-risk alleles have a frequency of 20%. On
the other hand, the corresponding l*

S for the recessive
multiplicative model, when the putative disease allele has
a 5% frequency, increases over lS anywhere from 100%
to 400%, depending on the magnitude of g. For the two-
locus dominant additive and multiplicative models, the
increase in l*

S over lS is generally more modest than
that observed in either the single-locus or epistatic
models.

Sarcoidosis as an Example

The occurrence of sarcoidosis in African American
families can serve as an example of how an estimate of
l*

S can be applied. Sarcoidosis is a multisystem granu-
lomatous disorder that is of unknown etiology and that
occurs more frequently and with more severity in African
Americans (Edmondstone and Wilson 1985; Rybicki et
al. 1997a; Rybicki et al. 1998). Although no major gene
has been identified, the clustering of sarcoidosis in fam-
ilies and case-control associations studies support a com-
plex etiology with a significant genetic component (Ry-
bicki et al. 1997b). Elsewhere, we have reported
tentative associations between the angiotensin-convert-
ing enzyme (ACE) D allele on chromosome 17 (Maliarik
et al. 1998) and two microsatellite repeat markers, IL-
1A*137 and F13A*188 (Rybicki et al. 1999), on chro-
mosomes 2 and 6, respectively. We have found that lS

for sarcoidosis is ∼3.37, on the basis of the ratio of

disease prevalence in African American sibs of sarcoid-
osis cases and the population from which these cases
were drawn (B. A. Rybicki and M. C. Iannuzzi, unpub-
lished data). Table 3 shows that the estimate of l*

S for
the ACE D allele is slightly larger than lS when the
sibships are restricted to those ascertained through ACE
I/D or D/D probands but that it is smaller when only
sibships ascertained through D/D probands are consid-
ered. Likewise, our estimate of l*

S is lower in sibships
ascertained through probands with at least one copy of
F13A*188. The largest estimate of l*

S is for those sib-
ships in which the proband has at least one copy of the
IL-1a*137 allele. Although the increases in l*

S over lS

were modest and although, because of the small sample,
l*

S for F13A*188 and IL-1A*137 homozygotes could
not be reliably estimated, under the assumption that all
three markers are in complete linkage with the locus in
question, these results tend to support the IL-1a locus
over the ACE and F13A loci as being a sarcoidosis-
susceptibility locus.

Relationship between lS, g, and Allele Sharing

What overall value of lS is required for the mapping
of disease-susceptibility genes? On the basis of a mean
test (Blackwelder and Elston 1985) for the proportion
of alleles shared at a disease locus, in a sample of 200
ASPs, conclusive evidence ( ) for linkage requires�4p ≈ 10
allele sharing of ∼59%, whereas a sample of 400 ASPs
requires allele sharing of ∼56%. In table 4, the expected
allele sharing at the disease locus (or loci) is calculated
for the nine different genetic models investigated. The
susceptibility allele frequency is set at a value such that
the population prevalence of disease is ∼1/1,000 at low
values of g. For a disease with a single susceptibility
allele, a lS of either 5.0 for a dominant allele with a
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Table 2

Comparison of lS and l*
S, at Different Levels of g and p

Genetic Model, g, and pa lS l*
S
b l*

S
c

Single-locus dominant:
g = 5:

p = .05 1.27 2.28 2.95
p = .20 1.22 1.50 1.79

g = 20:
p = .05 2.82 3.97 5.51
p = .20 1.60 1.73 2.16

Single-locus recessive:
g = 5:

p = .05 1.01 1.16 2.08
p = .20 1.15 1.47 2.10

g = 20:
p = .05 1.22 2.83 5.95
p = .20 2.49 3.53 4.45

Epistatic model 1:
g = 5:

p = .05 1.04 1.43 1.63
p = .20 1.28 1.60 1.85

g = 20:
p = .05 1.70 4.23 5.67
p = .20 2.21 2.56 3.16

Epistatic model 2:
g = 5:

p = .05 1.00 1.21 1.32
p = .20 1.00 1.97 2.42

g = 20:
p = .05 1.00 2.02 2.89
p = .20 1.07 6.04 9.76

Epistatic model 3:
g = 5:

p = .05 1.00 1.02 1.26
p = .20 1.09 1.29 1.72

g = 20:
p = .05 1.03 1.30 3.13
p = .20 2.04 2.96 3.99

Two-locus dominant additive:
g = 5:

p = .05 1.44 2.07 2.59
p = .20 1.23 1.38 1.56

g = 20:
p = .05 2.42 2.95 3.89
p = .20 1.36 1.49 1.72

Two-locus dominant multiplicative:
g = 5:

p = .05 1.84 3.10 4.01
p = .20 1.67 1.93 2.31

g = 20:
p = .05 8.57 11.61 16.12
p = .20 2.69 2.84 3.55

Two-locus recessive additive:
g = 5:

p = .05 1.02 1.17 2.07
p = .20 1.23 1.48 2.00

g = 20:
p = .05 1.41 2.86 5.75
p = .20 2.46 2.97 3.50

Two-locus recessive multiplicative:
g = 5:

p = .05 1.02 1.18 2.10
p = .20 1.33 1.69 2.42

g = 20:
p = .05 1.49 3.47 7.29
p = .20 6.21 8.79 11.10

a Epistatic models are as defined in table 1.
b Proband has at least one susceptibility allele at putative

disease locus.
c Proband has both susceptibility alleles at putative dis-

ease locus.

Table 3

Comparison of lS and l*
S, of Sarcoidosis, for Three

Putative Susceptibility Alleles in 86 Randomly Ascertained
Probands

Proband Sample lS l*
S(1)a l*

S(2)a,b

Entire sample 3.37 ) )
Restricted by ACE D allele ) 3.54 2.24
Restricted by IL-1A*137 allele ) 4.03 NE
Restricted by F13a*188 allele ) 2.60 NE

a As defined in table 2.
b NE = Not estimable.

frequency of 1% or a lS of ∼2.0 for a recessive allele
with a frequency of 10% would result in allele sharing
of 59% (table 4). In general, both single-locus and two-
locus models under a recessive mode of inheritance show
a substantial increase in allele sharing at the disease lo-
cus, with modest increases in lS. For all two-locus mod-
els, since the g for each locus was held equal to that of
the other, the allele sharing shown in table 4 is the per-
cent of the disease allele shared at either susceptibility
locus. If the underlying genetic model includes two or
more recessive alleles acting either additively or multi-
plicatively, then lS values of 3–5 should indicate disease
loci that can be mapped on the basis of the expected
proportion of allele sharing. In the case of epistasis, allele
sharing at a disease locus depends on the effect each
disease allele has on the other. For instance, epistatic
model 1 requires at least one allele at both loci to be
present for disease risk to be increased. In this model, a
lS of 10 will not, under most circumstances, be large
enough to allow mapping of either locus; on the other
hand, in epistatic models 2 and 3, a lS of 3 will result
in an ∼.56 allele-sharing proportion at the disease locus,
which, provided that both a tightly linked, highly poly-
morphic marker and 400 ASPs are available, would al-
low both susceptibility loci to be mapped.

Discussion

Since it was first proposed by Risch (1987, 1990a),
lS has been widely used as a measure of genetic effect
to estimate the power of a proposed ASP linkage study
(Risch 1990b; Holmans 1993; Gu and Rao 1997a,
1997b). Despite the widespread use of lS, the relation-
ship between it and g has not been clearly defined. In
the analyses presented in this report, we have shown
that, when one or two loci contribute to an increased
disease risk, lS will usually be less than the genotype
relative risk, g. In fact, without prior knowledge of the
genetic model and allele frequency, it becomes difficult,
if not impossible, to use lS to infer the magnitude of g

and the proportion of alleles shared, at the disease locus,
by affected sibs.

In a response to the article by Risch and Merikangas
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Table 4

Relationship between lS, g, and Allele Sharing at Disease Locus, under
Different Genetic Models

Genetic Model, Disease-Allele Frequency,
and lS

a g

Proportion of
Alleles Shared

at Disease Locus

Single-locus dominant, frequency .01:
lS = 1.5 10.0 .530
lS = 3.0 21.8 .566
lS = 5.0 35.8 .595
lS = 10.0 79.3 .646

Single-locus recessive, frequency .1:
lS = 1.5 16.0 .552
lS = 3.0 36.4 .611
lS = 5.0 59.6 .661
lS = 10.0 125.6 .746

Epistatic model 1, frequency .01:
lS = 1.5 72.9 .506
lS = 3.0 149.0 .513
lS = 5.0 215.5 .519
lS = 10.0 337.0 .529

Epistatic model 2, frequency .2:
lS = 1.5 54.7 .531
lS = 3.0 118.4 .562
lS = 5.0 181.0 .588
lS = 10.0 316.4 .633

Epistatic model 3, frequency .1:
lS = 1.5 30.7 .530
lS = 3.0 67.8 .563
lS = 5.0 106.2 .590
lS = 10.0 196.9 .637

Two-locus dominant additive, frequency .01:
lS = 1.5 7.4 .519
lS = 3.0 18.0 .544
lS = 5.0 34.4 .566
lS = 10.0 150.4 .604

Two-locus dominant multiplicative, frequency .01:
lS = 1.5 6.3 .517
lS = 3.0 11.5 .538
lS = 5.0 15.5 .549
lS = 10.0 22.2 .567

Two-locus recessive additive, frequency .1:
lS = 1.5 12.3 .535
lS = 3.0 30.3 .578
lS = 5.0 55.8 .614
lS = 10.0 183.0 .675

Two-locus recessive multiplicative, frequency .2:
lS = 1.5 6.0 .548
lS = 3.0 11.8 .602
lS = 5.0 17.2 .640
lS = 10.0 28.1 .694

a Epistatic models are as defined in table 1.

(1996) that first described the relationship between lS

and g, Scott et al. (1997) briefly expanded on the dif-
ference between lS and g, but they gave only one ex-
ample and did not explore different genetic models and/
or allele frequencies. Others have partially described the
relationship between genotype relative risk and the re-
currence risk in relatives. Neuman and Rice (1992) pre-
sented the necessary formulas for calculation of recur-

rence risk in different classes of relatives, under various
two-locus models, on the basis of allele frequency and
penetrance parameters. However, most of their models
assumed complete penetrance at one locus, and they did
not parameterize their results in terms of g and lS. Beaty
et al. (1987) described a class of two-locus epistatic mod-
els with regard to recurrence risk in relatives, but they
also did not explore the relationship between g and lS.
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The results that we have presented are supported by
examples from complex diseases for which reported ge-
notype-specific relative risks are much larger than sib
recurrence-risk ratios. For instance, the lS generally re-
ported for rheumatoid arthritis is 2–5 (Rigby et al.
1993), yet g values as high as 30 have been reported for
specific alleles of the HLA-DR (Dieye et al. 1997) and
HLA-DRB1 (Hall et al. 1996) loci. One general mis-
conception is that modest levels of lS (�10) imply that,
if genetic factors play a role, the susceptibility allele(s)
must have a reduced penetrance. Whereas this is usually
true for recessive inheritance and rare disease alleles, we
have shown that a lS of !10 can also be the result of
single-locus or two-locus additive inheritance when pen-
etrance is virtually complete (i.e., ), provided thatg ≈ �
the susceptibility allele(s) is common (�20%). In such
a situation, the value of lS is limited—not because the
underlying genotypic risk is low, but because of the rel-
atively large proportion of the population affected,
which, in turn, inflates the denominator of lS (the pop-
ulation prevalence). In table 4, we have shown that allele
sharing between affected sibs varies greatly for similar
values of lS, depending on the underlying genetic model.
For example, between affected sibs, disease-allele shar-
ing at proportions �55% is possible for lS values as low
as 1.5, even in the single-locus dominant model, if the
disease allele has a population frequency of �20% (data
not shown).

Both the way in which a disease allele is inherited and
its joint action with other disease alleles can have a pro-
found effect on the amount of evidence that it generates
for linkage. For instance, a considerably higher allele-
sharing proportion will occur for a disease under the

two-locus recessive-multiplicative-inheritance model,
compared with epistatic model 2 (in which two copies
of both alleles must be present to increase risk), at com-
parable levels of lS (see table 4). This is true even though
the genotypic relative risk of the latter is approximately
an order of magnitude higher. As we move from linkage
studies to studies designed to identify disease-suscepti-
bility alleles, the genetic effect expected for a suscepti-
bility allele may not be easily predicted from just the
original evidence for linkage, even within a general class
of inheritance models.

In summary, lS and g have a characteristic relationship
that depends on both allele frequency and mode of in-
heritance. Whereas, theoretically, g has no upper limit,
the value of lS is constrained by the disease-susceptibil-
ity-allele frequency and the underlying genetic model. If
nothing is known about the putative disease allele(s) and
its effects, an epidemiologically derived estimate of lS

cannot by itself justify an ASP linkage study. For in-
stance, we have shown that lS values as high as 10 are
not always indicative of a disease gene that can be easily
localized by linkage. Perhaps either association studies
that directly measure g or segregation analyses that can
provide both an indirect estimate of g and a possible
inheritance model may provide better preliminary results
for planning an ASP linkage study.
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Appendix A

Single-Locus Model

To illustrate how lS is derived for a single-locus dominant model, we must consider first the probability that an
affected proband is homozygous for the disease allele. This probability would be KG # p2 divided by the population
prevalence; label this proband genotypic probability “ .” The probability that a sib of an affected proband alsof1

has the disease is the sum of two separate probabilities: the probability of disease if the sib has the susceptibility
genotype and the probability of disease if the sib does not have the susceptibility genotype. If the proband is
homozygous for the susceptibility allele, then the probability that a sib of the proband does not inherit at least one
copy of the allele is , or, in terms of the frequency of the susceptibility allele, ( . Therefore, the2 2q /4 p � 2p � 1)/4
probability that such a sib is affected is . Alternatively, the probability that a sib of the proband2K # (p -2p � 1)/40

inherits one or two copies of the disease allele is , and the probability that this sib with the21 � (p � 2p � 1)/4
high-risk genotype is affected is . Summing the two probabilities and multiplying by the2K # [1 � (p � 2p � 1)/4]G

proband genotypic probability results in the joint probability that a proband is homozygous for the disease allele
and the sib is also affected: . Corresponding joint probabilities can2 2f {K (p � 2p � 1)/4 � K [1 � (p � 2p � 1)/4]}1 0 G

be calculated for a proband who is heterozygous for the susceptibility allele (label this marginal probability “ ”)f2

and homozygous for the normal allele (label this marginal probability “ ,” so that ). The summationf f � f � f = 13 1 2 3

of these three probabilities,
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2 2 2 2p � 2p � 1 p � 2p � 1 p � 3p � 2 2 � p � 3p
f K � K 1 � � f K � K 1 �1 0 G 2 0 G( ) ( ) ( ) ( )[ ] [ ]4 4 4 4

2 2p p
�f K 1 � p � � K p � , (A1)3 0 G( ) ( )[ ]4 4

is the overall risk of disease to a sib of an individual with disease. It follows, then, that lS for a disease for which
only one dominant susceptibility allele that increases disease risk exists is expression (A1) divided by the population
prevalence. The overall risk of disease for a sib of an individual with a disease influenced by a recessively acting
allele with frequency p can be computed in the same manner, and the resulting expression is as follows:

2 2 2 23 � p � 2p 1 � �2p � p p � p p � p
f K � K � f K 1 � � K 1 �1 0 G 2 0 G( ) ( ) ( ) ( )[ ] [ ]4 4 4 4

2 2p p
�f K 1 � � K . (A2)3 0 G( ) ( )[ ]4 4

Important to note, with regard to the relationship between lS and g, is that the probability that any randomly
sampled person with disease has the susceptibility genotype depends on both the gene frequency and g. For example,
in the case of a single dominant gene, if , , and —that is, —then the probabilityp = .1 K = 0.001 g = 100 K = 0.10 G

that an individual with disease does not have the susceptibility genotype is only 4%. If g decreases to 10, then the
probability that an individual with disease does not have the susceptibility genotype increases to 30%.

Two-Locus Model

To explore the relationship between lS and g under a two-locus model, we can expand the expressions for disease
prevalence and sib risk. Consider two unlinked diallelic loci with alleles A,a, and B,b, respectively, where A and
B act dominantly over a and b to increase risk of disease. If, as before, K0 is the risk when neither susceptibility
allele is present (i.e., the genotype aabb), then three risk parameters need to be considered: KA, the risk of disease
when only A is present; KB, the risk of disease when only B is present; and KAB, the risk of disease when both A
and B are present. If A and a have frequencies p and q and if B and b have frequencies r and s, and if, in addition
to Hardy-Weinberg equilibrium, there are no allelic associations (and, hence, no linkage disequilibrium between
the loci), then the disease prevalence expressed in terms of genotype risks and frequencies is

2 2 2 2 2 2 2 2( ) ( ) ( ) ( )K q s � K p � 2pq s � K q r � 2rs �K p � 2pq r � 2rs . (A3)0 A B AB

The numerator for lS in the two-locus model consists of nine separate joint probabilities corresponding to the
nine possible genotypes for two diallelic loci. If the nine proband genotypic probabilities are labeled “f1”–“f9,” and
sum to 1, as in the single locus model, then a similar probability for the risk of disease in the sib of a proband
can be constructed. For an affected sib of a proband, nine separate probabilities exist for each of the nine possible
genotypes of the proband. Let gij be the probability that an affected sib of a proband with genotype i possesses
genotype j, where i, j = 1, 2, ), 9. Then the joint probability for a proband with the AABB genotype and an
affected sib is

( ) ( ) ( )f K g � K g � g �K g � g �K g � g � g � g .[ ]1 0 19 A 17 18 B 13 16 AB 11 12 14 15

The overall risk of disease for a sib of an affected person is the sum of the nine joint probabilities corresponding
to each possible genotype:

9

( ) ( ) ( )f K g � K g � g �K g � g �K g � g � g � g . (A4)[ ]� 1 0 i9 A i7 i8 B i3 i6 AB i1 i2 i4 i5
i=1

Dividing expression (A4) by expression (A3), one has the value of the overall lS for a disease with two unlinked
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loci in which each has one dominantly acting susceptibility allele. As with the single-locus model, this expression
can be easily modified for models with different genotypic risks (e.g., a two-locus recessive model).

Generalized Expression for lS

The expression for lS can be generalized for any situation in which susceptibility genotypes exist. As described
earlier, let be the probability of a susceptibility genotype and let be the probability of a nonsusceptiblep p = 1 � pG 0 G

genotype. Then in the single-locus models, for example, we can substitute so that expressions (A1) andK = gKG 0

(A2), the numerators of lS under dominant and recessive inheritance, respectively, are both of the form

3
gK a0 i ( )b � gc , (A5)� i ip � gpi=1 0 G

In expression (A5), ai, bi, and ci are defined as follows: ai = prior probability of the ith genotype on the basis of
allele frequencies; bi = the probability of a sib having a nonsusceptible genotype, given that the proband has the
ith genotype; ci = the probability of a sib having a susceptibility genotype, given that the proband has the ith
genotype.

By definition, the , and, for any genotype i, . The denominator of lS is , so that,Sa = 1 b � c = 1 K p � gK pi i i 0 0 0 G

canceling out , we can write lS in the formK0

31
( )ga b � gc . (A6)� i i i2( )p � gp i=10 G

For the two-locus models that we have considered, three relative risks exist—gA, gB and gAB, which we rewrite
as vAg, vBg, and g, respectively. Dividing expression (A4) by expression (A3), we can then write lS for the two-
locus models, in the form

91
( )ga b � v gc � v gd � ge , (A7)� i i A i B i i2( )p � v gp � v gp � gp i=10 A A B B G

where . In the expression for the two-locus model, and represent the same values as inp � p � p � p = 1 a b0 A B AB i i

the single-locus model, however, the term is now expanded to three terms—ci, di, and —that are defined asc ei i

follows: = the probability of a sib having a genotype with only susceptibility allele A, given that the probandci

has the ith genotype; = the probability of a sib having a genotype with only susceptibility allele B, given thatdi

the proband has the ith genotype; = the probability of a sib having a genotype with both susceptibility alleles Aei

and B, given that the proband has the ith genotype.
From this framework, the limit of lS as can be easily derived. For in expression (A6), for the single-g r � g r �

locus model, we have

31
lim l = a c ,�S i i2p i=1gr� G

and, similarly, from expression (A7), for the two-locus models, we have

91
( )lim l = a v c � v d � e .�S i A i B i i2( )v p � v p � p i=1gr� A A B B AB
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